量化是在嵌入式系统或手机上部署训练有素的DNN模型时,是最应用的深神经网络(DNN)压缩策略之一。这是由于其对广泛的应用和情况的简单性和适应性,而不是特定的人工智能(AI)加速器和编译器,这些加速器和编译器通常仅用于某些特定的硬件(例如Google Coral Edge TPU)。随着对量化的需求不断增长,确保该策略的可靠性成为一个关键挑战。传统的测试方法收集越来越多的真实数据以进行更好的评估,通常是不切实际的,因为输入空间的尺寸很大,并且原始DNN及其量化的对应物之间的相似性很高。结果,高级评估策略已变得至关重要。在本文中,我们提出了Diverget,这是一个基于搜索的测试框架,用于量化评估。 Diverget定义了变质关系的空间,该空间模拟了输入上的自然扭曲。然后,它最佳地探索了这些关系,以揭示不同算术精度的DNN之间的分歧。我们评估了应用于高光谱遥感图像的最先进的DNN上的Diverget的性能。我们选择了遥感DNN,因为它们越来越多地部署在诸如气候变化研究和天文学之类的关键领域中的边缘(例如,高级无人机)。我们的结果表明,Diverget成功地挑战了已建立的量化技术的鲁棒性,以防止自然变化的数据,并胜过其最新的并发,Diffchaser,其成功率(平均)是四倍。
translated by 谷歌翻译
在现实世界应用程序中部署深度学习(DL)的软件系统有所增加。通常,DL模型是使用具有自己的内部机制/格式来代表和训练DL模型的DL框架开发和培训的,通常这些格式无法通过其他框架识别。此外,训练有素的模型通常被部署在与开发的环境不同的环境中。为了解决互操作性问题并使DL模型与不同的框架/环境兼容,引入了一些交换格式,例如ONNX和Coreml等DL模型。但是,社区从未对ONNX和Coreml进行经验评估,以揭示其转换后的预测准确性,性能和稳健性。转换模型的准确性差或不稳定行为可能导致部署的基于DL的软件系统的质量差。在本文中,我们进行了第一项评估ONNX和Coreml的经验研究,以转换训练有素的DL模型。在我们的系统方法中,两个流行的DL框架Keras和Pytorch用于在三个流行数据集上训练五种广泛使用的DL模型。然后将训练有素的模型转换为ONNX和Coreml,并将其转移到待评估该格式的两个运行时环境中。我们研究转换之前和之后的预测准确性。我们的结果揭示了转换模型的预测准确性在相同的原始级别。也研究了转换模型的性能(时间成本和内存消耗)。转换后模型的大小减小,这可能导致基于DL的软件部署。通常将转换的模型评估为在相同级别的原始级别上。但是,获得的结果表明,与ONNX相比,Coreml模型更容易受到对抗攻击的影响。
translated by 谷歌翻译
The performance of the Deep Learning (DL) models depends on the quality of labels. In some areas, the involvement of human annotators may lead to noise in the data. When these corrupted labels are blindly regarded as the ground truth (GT), DL models suffer from performance deficiency. This paper presents a method that aims to learn a confident model in the presence of noisy labels. This is done in conjunction with estimating the uncertainty of multiple annotators. We robustly estimate the predictions given only the noisy labels by adding entropy or information-based regularizer to the classifier network. We conduct our experiments on a noisy version of MNIST, CIFAR-10, and FMNIST datasets. Our empirical results demonstrate the robustness of our method as it outperforms or performs comparably to other state-of-the-art (SOTA) methods. In addition, we evaluated the proposed method on the curated dataset, where the noise type and level of various annotators depend on the input image style. We show that our approach performs well and is adept at learning annotators' confusion. Moreover, we demonstrate how our model is more confident in predicting GT than other baselines. Finally, we assess our approach for segmentation problem and showcase its effectiveness with experiments.
translated by 谷歌翻译
Recent advances in upper limb prostheses have led to significant improvements in the number of movements provided by the robotic limb. However, the method for controlling multiple degrees of freedom via user-generated signals remains challenging. To address this issue, various machine learning controllers have been developed to better predict movement intent. As these controllers become more intelligent and take on more autonomy in the system, the traditional approach of representing the human-machine interface as a human controlling a tool becomes limiting. One possible approach to improve the understanding of these interfaces is to model them as collaborative, multi-agent systems through the lens of joint action. The field of joint action has been commonly applied to two human partners who are trying to work jointly together to achieve a task, such as singing or moving a table together, by effecting coordinated change in their shared environment. In this work, we compare different prosthesis controllers (proportional electromyography with sequential switching, pattern recognition, and adaptive switching) in terms of how they present the hallmarks of joint action. The results of the comparison lead to a new perspective for understanding how existing myoelectric systems relate to each other, along with recommendations for how to improve these systems by increasing the collaborative communication between each partner.
translated by 谷歌翻译
Nowadays, the current neural network models of dialogue generation(chatbots) show great promise for generating answers for chatty agents. But they are short-sighted in that they predict utterances one at a time while disregarding their impact on future outcomes. Modelling a dialogue's future direction is critical for generating coherent, interesting dialogues, a need that has led traditional NLP dialogue models that rely on reinforcement learning. In this article, we explain how to combine these objectives by using deep reinforcement learning to predict future rewards in chatbot dialogue. The model simulates conversations between two virtual agents, with policy gradient methods used to reward sequences that exhibit three useful conversational characteristics: the flow of informality, coherence, and simplicity of response (related to forward-looking function). We assess our model based on its diversity, length, and complexity with regard to humans. In dialogue simulation, evaluations demonstrated that the proposed model generates more interactive responses and encourages a more sustained successful conversation. This work commemorates a preliminary step toward developing a neural conversational model based on the long-term success of dialogues.
translated by 谷歌翻译
In this work, we introduce a hypergraph representation learning framework called Hypergraph Neural Networks (HNN) that jointly learns hyperedge embeddings along with a set of hyperedge-dependent embeddings for each node in the hypergraph. HNN derives multiple embeddings per node in the hypergraph where each embedding for a node is dependent on a specific hyperedge of that node. Notably, HNN is accurate, data-efficient, flexible with many interchangeable components, and useful for a wide range of hypergraph learning tasks. We evaluate the effectiveness of the HNN framework for hyperedge prediction and hypergraph node classification. We find that HNN achieves an overall mean gain of 7.72% and 11.37% across all baseline models and graphs for hyperedge prediction and hypergraph node classification, respectively.
translated by 谷歌翻译
A "heart attack" or myocardial infarction (MI), occurs when an artery supplying blood to the heart is abruptly occluded. The "gold standard" method for imaging MI is Cardiovascular Magnetic Resonance Imaging (MRI), with intravenously administered gadolinium-based contrast (late gadolinium enhancement). However, no "gold standard" fully automated method for the quantification of MI exists. In this work, we propose an end-to-end fully automatic system (MyI-Net) for the detection and quantification of MI in MRI images. This has the potential to reduce the uncertainty due to the technical variability across labs and inherent problems of the data and labels. Our system consists of four processing stages designed to maintain the flow of information across scales. First, features from raw MRI images are generated using feature extractors built on ResNet and MoblieNet architectures. This is followed by the Atrous Spatial Pyramid Pooling (ASPP) to produce spatial information at different scales to preserve more image context. High-level features from ASPP and initial low-level features are concatenated at the third stage and then passed to the fourth stage where spatial information is recovered via up-sampling to produce final image segmentation output into: i) background, ii) heart muscle, iii) blood and iv) scar areas. New models were compared with state-of-art models and manual quantification. Our models showed favorable performance in global segmentation and scar tissue detection relative to state-of-the-art work, including a four-fold better performance in matching scar pixels to contours produced by clinicians.
translated by 谷歌翻译
Increasing popularity of deep-learning-powered applications raises the issue of vulnerability of neural networks to adversarial attacks. In other words, hardly perceptible changes in input data lead to the output error in neural network hindering their utilization in applications that involve decisions with security risks. A number of previous works have already thoroughly evaluated the most commonly used configuration - Convolutional Neural Networks (CNNs) against different types of adversarial attacks. Moreover, recent works demonstrated transferability of the some adversarial examples across different neural network models. This paper studied robustness of the new emerging models such as SpinalNet-based neural networks and Compact Convolutional Transformers (CCT) on image classification problem of CIFAR-10 dataset. Each architecture was tested against four White-box attacks and three Black-box attacks. Unlike VGG and SpinalNet models, attention-based CCT configuration demonstrated large span between strong robustness and vulnerability to adversarial examples. Eventually, the study of transferability between VGG, VGG-inspired SpinalNet and pretrained CCT 7/3x1 models was conducted. It was shown that despite high effectiveness of the attack on the certain individual model, this does not guarantee the transferability to other models.
translated by 谷歌翻译
Human Activity Recognition (HAR) is an emerging technology with several applications in surveillance, security, and healthcare sectors. Noninvasive HAR systems based on Wi-Fi Channel State Information (CSI) signals can be developed leveraging the quick growth of ubiquitous Wi-Fi technologies, and the correlation between CSI dynamics and body motions. In this paper, we propose Principal Component-based Wavelet Convolutional Neural Network (or PCWCNN) -- a novel approach that offers robustness and efficiency for practical real-time applications. Our proposed method incorporates two efficient preprocessing algorithms -- the Principal Component Analysis (PCA) and the Discrete Wavelet Transform (DWT). We employ an adaptive activity segmentation algorithm that is accurate and computationally light. Additionally, we used the Wavelet CNN for classification, which is a deep convolutional network analogous to the well-studied ResNet and DenseNet networks. We empirically show that our proposed PCWCNN model performs very well on a real dataset, outperforming existing approaches.
translated by 谷歌翻译
Learning fair graph representations for downstream applications is becoming increasingly important, but existing work has mostly focused on improving fairness at the global level by either modifying the graph structure or objective function without taking into account the local neighborhood of a node. In this work, we formally introduce the notion of neighborhood fairness and develop a computational framework for learning such locally fair embeddings. We argue that the notion of neighborhood fairness is more appropriate since GNN-based models operate at the local neighborhood level of a node. Our neighborhood fairness framework has two main components that are flexible for learning fair graph representations from arbitrary data: the first aims to construct fair neighborhoods for any arbitrary node in a graph and the second enables adaption of these fair neighborhoods to better capture certain application or data-dependent constraints, such as allowing neighborhoods to be more biased towards certain attributes or neighbors in the graph.Furthermore, while link prediction has been extensively studied, we are the first to investigate the graph representation learning task of fair link classification. We demonstrate the effectiveness of the proposed neighborhood fairness framework for a variety of graph machine learning tasks including fair link prediction, link classification, and learning fair graph embeddings. Notably, our approach achieves not only better fairness but also increases the accuracy in the majority of cases across a wide variety of graphs, problem settings, and metrics.
translated by 谷歌翻译